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ESTIMATION OF TOLERANCE LIMITS FOR METEOROID HAZARD TO SPACE 
VEHICLES 100-500 KILOMETERS ABOVE THE SURFACE OF THE EARTH 

BY 

Charles C. Dalton 

SUMMARY 

Most of the uncertainty in the meteoroid puncture hazard for vehicles near the 
Earth is attributable to the uncertainty in meteoroid density ( specific gravity) . There 
is an even chance that density is between 0.094 and 2.1. 

All meteoroids which approach the Earth from interplanetary space (the only 
case considered in this paper) experience a velocity increment equal to the escape 
velocity, which is I1  km/sec near the Earth. Half of the meteoroids have atmospheric 
impact velocities between 19 and 47 km/sec. The paths of the relatively slower 
meteoroids are deflected more by the gravitational field of the ear th  so that the collision 
c ross  section for the Earth is relatively larger. 
have near-Earth velocities only 5 percent greater than escape velocity have more than 
an order of magnitude greater flux near the Earth than in interplanetary space. 
statistical distribution of the zenith angle for all meteoroids which collide with the 
atmosphere is invariant with respect to velocity. Therefore the zenith angles have 
decrements which are appreciable for  relatively slow meteors. 

For instance, those meteoroids which 

But the 

The number of photographic meteors increases by a factor of approximately 26 
for an order of magnitude decrease in meteoroid relative mass. 
of mass  is not accurately known. There is only an even chance that the average flux 
of meteoroids of mass  greater than an indicated mass  can be specified between limits 
which are separated by 3.8 orders  of magnitude. 

But the absolute value 

When the velocity of a meteoroid is not specified, the thickness of a just-punc- 
turable wall is directly proportional to the cube root of the meteoroid mass and in- 
versely proportional to the cube root of the product of the density and Brinell hardness 



of the wall material. There is an  even chance that the proportionality constant is 
between 7.8 and 26 when meteoroid mass and wall thickness are in grams and centi- 
meters , respectively. 

For a vehicle which is nearly spherical o r  which has random attitude, the 
average number of punctures per  square meter of effectively exposed area pe r  second 
in a near-Earth orbit is inversely proportional to the I. 42 power of the product of the 
density, the Brinell hardness, and the cube of the thickness of the wall. There is an 
even chance that , with wall thickness expressed in centimeters, the proportionality 
constant is between 2.2 x and I. 6 x 10". Shielding by the Earthmay reduce the 
effectively exposed area to about half the total area. 

For achieving a specified design reliability for a specified mission, there is an 
even chance that the wall thickness of a space vehicle can be specified between lower 
and upper limits that are separated by I. 4 orders of magnitude. Thg confidence in 
achieving the required no-puncture probability can be increased from 50 percent to 
73 percent by making the single wall 4.4 times thicker. 
advantage could be gained by using two thinner walls of the same total thickness sep- 
arated by one inch of glass wool filler, 

It may be that the same 

A least-squares analysis of data for a random sample of 286 photographic 
sporadic meteors with masses spanning three orders of magnitude gives a correlation 
of -0.82 between the logarithms of mass and velocity. The significant negative cor- 
relation did not change when special weighting factors were used. 

SECTION I. INTRODUCTION 

A .  SCOPE 

The information which is included in the selected references which are 
cited at the end of this report was reviewed as a perspective basis for decisions about: 
( i) what parameters are appropriate for representing meteoroid hazard, and (2)  what 
are the most convenient functional relations and statistical representations which would 
not appear to bias the end results. 

It is assumed: (I) that the vehicle is either spherical o r  that it does not have 
attitude control, (2)  that all segments of the wall of the vehicle are equally important 
and that they are of the same material and thickness, and (3) that the day and hour of the 
exposure have not been related to specific forecasts of meteoroid flux (shower events, 
seasonal, and diurnal variations) . 
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Single-shell-of-metal is the basis of the analysis. Of course, there is con- 
siderable interest in composite bumpers and, e. g. , in multiple-sheet structures [Ref. 
21 ; but it is hoped that the effectiveness of other materials and structures can be con- 
sidered in te rms  of the effectiveness of some thickness of single-shell-of-metal. 

B. METHOD 

The value that a physical parameter (e. g. , length, velocity, etc. ) will have 
under specified circumstances will be uncertain when: ( I )  the parameter (or  the 
physical process of which the parameter is indicative) may be capricious (e. g. , the '. parameter may be a random statistical variable) , (2) the available information may 
not be either sufficiently firm o r  direct, o r  (3) the latter is compounded with the 
former - as in the present problem - the resulting uncertainty being treated as if it 
were caused by randomness. 

C. MATHEMATICAL CONSIDERATIONS 

Several of the random variables are introduced as exponents rather than as 
coefficients because they involve decisions concerning the relation between the 
logarithms of parameters. 

The confidence C in the antilogarithm of an approximately normally distributed 
chance variable y is the same as the confidence in the variable; i. e. , 

- - 
( C ,  lOy)= (0.25, 10 '-" 6745CTy) , (0.50, I O Y )  , 

?+ 0 . 6 7 4 5 ~ ~ ~  
(0.75, 10 ) *  

SECTION II. INTERPRETATION OF THE INFORMATION FROM 
SELECTED REFERENCES 

A. METEOROID DENSITY 

Meteoroids differ not only in mass ,  but also those which have approximately 
the same mass may differ widely in composition and structure. They are, in the 
order of increasing abundance and decreasing puncturability , classified broadly as: 
(I) metallic, with density somewhat more o r  less than that of iron, say pp = 7 . 8 ,  (2) 
stony, say with density somewhat more or  less than p - 3.5, and (3) fluffy, with density 
somewhat more o r  less than the value 

P -  
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recently suggested by Whipple [ 31. In this analysis the meteoroid density is represented 
by a random variable (which is also considered to be the source of the uncertainty in 
meteoroid flux in Section IC. B. 4) with normally distributed common logarithm, the mean 
value of which agrees with Eq. 2 and the variance of which is unity, i. e. , 

pp = ioyt,  

- 
y1 = loglo pi = - 0.354,  

CT = i .00 
Y l  

B. METEOROID FLUX 

i. Temporal Dependence of -- Flux. The probability density function f( t )  for  
the meteoroid puncture of a space vehicle is 

t 
- Jam(t) dt 

( 6 )  
0 f ( t )  = m ( t ) e  

where m (t)  is a function of time which in life statistics is called "specific mortality" 
and in engineering statistics is sometimes called fffailure-rate-of-survivorsff or  
"hazard function. f f  Then the product m (t) dt is the conditional probability that if the 
event has not already occurred by time t then it will occur in the interval between t and 
t + dt. The probability R that the'event will not have occurred by time t is 

t t -s m (t) dt - s @A dt 
0 = e  0 t 

R = i - J f ( t )d t  = e 
0 

where A is the effectively exposed area of the vehicle in square meters ,  and the flux @ 
is the number of puncturable meteoroids pe r  square meter  pe r  .Second. 

The specific mortality function corresponding to the Poisson distribution function 
is the constant reciprocal of the mean-time-to-occurrence for the repeated event, i. e. , 
m is the average rate of occurrence of the event, o r  in meteoroid technology, flux @ 
times exposed area A ,  and Eq. 7 becomes 

-@At R = e  

For either sporadic o r  shower meteoroids, impact probability is sufficiently 
approximated by either a Poisson o r  a piece-wise-Poisson description with respect to 
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time, depending on whether the available information is specific o r  general, and on 
whether one is concerned with specific o r  average circumstances. 
effect for two such hazards also has a Poisson description: 

But the combined 

( 9 )  
-A 

R = e  [ ( Q > i i + & z ) t i +  ( + z i + + z z ) t z + * * *  + ( + n i + @ n z ) t n l -  

Eqs. 
is the time average of the It does not make any difference whether 
o r  not the @ in Eq. 8 and the , @n in Eq. 9 are further resolved into: ( I )  com- 
ponents due to sporadic meteoroids, and (2) components due to shower meteoroids -- 
unless it should be found that the two populations should be separately described with 
respect to mass,  density, belocity, etc. 

8 and 9 give the same result for the same exposure At whenever $I in Eq. 8 
@n in Eq. 9. 

2. Directional - ~- ~~ Dependence of Flux. Since this analysis is only for  
meteoroid hazard near the Earth, and since most of the information on which the 
analysis is based is from meteoroids incident onto a space vehicle o r  into the atmos- 
phere, the distributions of the orbital elements of the meteoroids (e. g. , perihelion, 
eccentricity, inclination from the plane of the ecliptic, etc.) do not need to be es- 
tablished. Rather, one is concerned about the zenith angle xi, i. e. , the angle between 
the geocentric position vector of the meteoroid and the negative of its geocentric 
closing velocity vector. 

The necessary functional relations for hyperbolic trajectories are given in 
introductory treatments of celestial mechanics. The hyperbolic velocity excess v, is 

i 

where me is the mass of the Earth, y is the universal constant of gravitation, and ra 
is the radial distance from the center of the Earth to the zone implicit in meteoroid 
velocity data. The velocity vr  at radial distance r is , by Eq. 10,  

1 

vr = [va2 - 2yme ($ - $1 ?. 

Since a spacecraft orbits at geocentric radial distance r ,  it is convenient to consider 
that a geocentric sphere of radius r makes a tunnel of radius D1 through a swarm of 

meteoroids. This is true when (I) the trajectory of any meteoroid originally approach- 
ing along the surface of the tunnel with the closing velocity v, is tangent to the sphere r,  
and when (2) the trajectory of any meteoroid originally approaching with the same 
velocity but within the tunnel and displaced only Dxi c DA 

Z T  

from the tunnel axis cuts  the 
2 
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sphere r at angle xi < 3. with respect to the local position vector (i. e. , xi is the zenith 
angle). Because of the conservation of angular momentum , the c ross  product of the 
meteoroid velocity vector and geocentric radius vector is invariant with respect to the 
position of any particular meteoroid along its trajectory, i. e. , 

v,Dxi = vr r sin xi . 
The potential energy of a meteoroid at  radial distance r is invariant with respect to 
zenith angle xi , and, because of the conservation of total energy, the kinetic energy is also 
invariant. The velocity vr is also invariant with respect to mass  for given v,. Then 
vr and, therefore, v r r  a r e  invariant with respect to xi. Substituting 7r/2 for xi ' in 
Eq. 12  gives 

v r = v,D,/2 

sin xi = Dxl / DT/2 

r 

J 
c 

(13) 

Since the relative a rea  of a narrow concentric ring in the cross  1 section of the 
tunnel is equal to the product of its relative circumference and its differential relative 
width, and because of diurnal averaging, one must admit equal probability for positive 
and negative values of xi. It follows from Eq. 13 that the probability distribution func- 
tion for xi , - - T 5 xi i + T ,  is I 

2 

Therefore, the mean and standard deviation of xi are:  

and 
I 

= [ (n2 - 4) / 8  ] f = 0.856 radians. ( 16) xi 

Although the above tunnel concept was convenient in the derivation of Eqs. 13 
through 16 , the results should be valid (on a diurnal average basis) also when meteor- 
oids approach the Earth from any direction. By Eq. 13 one sees  that half of the meteors 
should approach the atmosphere with angles deviating less than 45 degrees from the zenith. 

Hawkins and Southworth [ 13 tabulated values of cos ZAR, velocity V a ,  and maxi- 
mum photographic absolute magnitude Mpm, where ZAR is the apparent radiant zenith 
angle for  a random sample of 286 sporadic meteors selected from the Baker Super- 
Schmidt photographs taken from stations in New Mexico from February 1952 to July 1954. 
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Meteor radiant zenith angles ZAR calculated from those data have the following mean 
and standard deviation when the data are uniformly weighted; 

- 
0.64 radians Z~~ = 

= 0.30 radians 
a Z ~ R  

But, .by Eq. 14, the mean and standard deviation of arithmetic values of meteoroid 
zenith angles xi should be n/4 = 0 . 7 9  and 0.34, respectively. 

The sample cumulative probability contour for uniformly weighted meteor 
radiant zenith angle ZAR and the theoretical cumulative probability contour for the 
arithmetic value of the meteoroid velocity vector zenith angle I xil are. both shown in 
Figure I for further comparison. Apparently the sample of meteor radiants is consid- 
erably biased with respect to zenith angle ZAR in that large angles are not sufficiently 
represented (the sample spans the interval 0 5 ZAR 5 80").  Although this bias could 
'be caused by the limitations of the field of view of the cameras,  it must be attributed, at 
least in par t ,  to atmospheric attenuation. 

By the method of non-uniform weighting developed in Appendix A ,  the same 
calculated values of ZAR have the following mean and standard deviation: 

- 
ZAR = 0 . 5 9  

and the sample cumulative probability contour is shown in Figure 2. 

Apparently bhe distribution of meteor apparent zenith angles is not appreciably 
influenced by the weighting scheme, which is used for a different purpose, thus affording 
some reassurance that the weighting scheme may not introduce devious complications. 

3. Spatial Dependence of Flux. By Eqs. 10, I1  , and 13, the factor by which 
the flux of meteoroids is increased at geocentric radial distance r by the gravitational 
field is 

where ve is the escape velocity at the distance of interest r. For instance, the f l u x  of 
those meteoroids which enter the atmosphere with geocentric velocity only' 5 percent in 

7 
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excess of the escape velocity is increased by more than one order of magnitude. This 
focusing efficiency is a monotonically decreasing function of geocentric radial distance; 
but it may be more than enough to compensate for the monotonically decreasing shielding 
of a vehicle by the Earth. 

4. Mass Dependence of Flux. An equation of the form 

F, =01.m P2 

is used by many investigators. F, is the flux of particles having mass m or  greater, 
and 01 and pl! a r e  constants. 

The selection of a solution pair of values (CY , P 2 )  is not decided in the F,,m 
domain by most authors. It is decided in the loglo F,, logio m domain; i. e. , from a 
family of equi-probable contours of possible solution points which a r e  the consequences 
of the following underlying functional representation 

Functional relations between the flux F, of meteoroids with masses equal to o r  
greater than m to be encountered by a spaceccaft, o r  relations between logio F, and 
logiom have been inferred primarily from data obtained by careful quantitative 
measurements of physical parameters involved in the following four phenomena: (I) 
the interaction of meteoroids with the atmosphere of the Earth as studied by visual , 
photographic, and radar methods and discussed by Whipple [4] , (2) the accumulation of 
meteoroid debris on the Earth as studied by chemical, physical, and statistical analyses 
of the sediments, and discussed by Laevastu and Mell is  [5] , (3) the disturbance by 
micrometeoroids hitting instrumented artificial satellites'as studied by microphones, 
and discussed by Dybin [6  and 71 , and (4) interaction between micrometeoroids and 
electromagnetic radiation, as implied by physical optical peculiarities of solar corona 
and zodiacal light, and discussed by Beard [8].  The combined interpretation of these 
four separate categories of information is further facilitated (or  confused, depending 
on one's point of view) by theoretical considerations of the paths of meteoroids of given 
mass and cross  sectional a rea  moving under the combined influences of solar radiation 
and solar and planetary combined gravitational fields -- as discussed by Siedento6f [ 91 , 
Best [ I O ]  and Beard 181. 

The various published interpretations of the preceding information differ con- 
siderably, suggesting that the results must yet be uncertain to a considerable extent. 
Whpn various interpretations are considered as points in a graph, loglo F, versus l o g l p  , 
then results are missing for I O - '  gm < m < I O - 4  gm. Except for the degradation of 
optical surfaces , thin films, paints, etc. , this is the entire region of interest -- mass m 
possibly large enough for penetration of a space vehicle ( o r  vital component) and flux 
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F, possibly too high to be ignored. None of the various phenomena o r  underlying 
principles of interpretation give points on both sides of the interval of interest. 

A value for p3 can be established from data relating meteor flux and meteor 
visual magnitude after a value has been assumed for mg (the mass of a meteoroid which 
produces a zero visual magnitude meteor). The values of ma and VQ which are as- 
sumed (for a meteoroid which enters normally into the atmosphere with 35 km/sec 
velocity and 0.073 density) for this analysis a r e  

I 

I 
vo = 35 km/sec . (25) 

In the random sample of photographic meteor data described in Section 1I.A. 2, 
1 

~ 

Hawkins and Southworth [I] did not tabulate estimates of the initial masses of the 
meteoroids corresponding to the meteors. But corresponding values of mass  can be 
&erred. They [I] indicate that absolute photographic magnitude M 
verted to absolute visual magnitude by adding an index varying between I. 8 for 
bright meteors and I. 0 for faint ones. The uniform application of this relation over 
the sample range -2.5 5 Mpm 5 3.3 can be expreseed by 

can be con- 
Pm 

(26) Pm 
Mv = I. 45 + 0.86 M 

Therefore, with the basic theory of the meteoric process which they [I] presented, 
and with the values of mo and vo from Eqs. 24 and 25, one can infer that 

loglo m = 4.79 - 0.34 M - loglo (va3 cos zAR) . 
Pm 

The mass dependence of the common logarithm of the sample cumulative 
probability for the (Eq. 27) uniformly weighted values of - loglo m is illustrated 
graphically in Figure 3. Except for noise (randomness) and any bias in the sample 
with respect to meteoroid mass and sample size,  the slope of the contour in Figure 3 
should have a constant value equal to p2 in Eq. 23. This follows from Eq. 23, by 
neglecting the term because of density variations, because the number nt meteoroids 
with mass not less than that of the smallest of the sample m~ is proportional to the 
corresponding cumulative flux F>L times the product of the observed area  and duration. 
The number nf of meteoroids with mass m 2 mi > mL is the same fraction of % as 
F 
results by the method of non-uniform weighting which is developed in Appendix A a r e  
illustrated in Figure 4. The slopes of the median contours in Figures 3 and 4 a r e  -i. 19 
and -1.42, respectively, when only the fifteen points corresponding to the greatest mass 
on the logarithmic cumulative probability curve are considered for each case by the 

is of F>L; i.e., as the ratio of the masses to the power p2. The corresponding 
>I 
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method of least squares. It would appear that the first fifteen points from the ordered 
sample may provide a nearly optimum compromise between (i) having enough points 
for smoothing out any gross  irregularities and (2) avoiding that part of the curve which 
is necessarily curved because the sample size is not relatively large. The appropriate 
value for p2 to be used in Eq. 23 is the one from Figure 4, 

in which the bias with respect to mass  has been minimized by using weighting factors. 
Because the value of p2 in Eq. 28 differs quite significantly from the .alternative value 
(-1. i9),the scatter-diagrams in Figures 5 through 7 are included so that the role of the 
weighting factors can be more clearly seen. 

Based on the assumption that a meteoroid of 0.073 gm/cm3 density and 35 km/sec 
velocity normally incident onto the top of the atmosphere will produce a meteor of zero 
absolute visual magnitude when the mass (Eq. 24) is 5.48 gm, It follows by Eqs. 26 
and 27 that Hawkins and Southworth's [i] photographic meteor data can be inferred to 
relate absolute magnitude to mass  according to the scatter diagrams in Figure 8+ This 
is true because absolute magnitude is related to velocity according to the scatter diagram 
in Figure 9. But the Eq. 28 value for p2 is invariant both with respect to the Eq. 24 
value for mo and with respect to any e r r o r s  in either of Eqs. 26 and 27 which might be 
caused by the omission of constant terms. 

Whipple [ 31 suggests the following values for the constants in Eq. 23: 

and also indicates that, by adopting the same value for p2, the corresponding values for 
the older Watson Law [ii] become 

Eq. 23 is invariant with respect to the two sets  of values of the constants when m = 
grams. TVs  value is within the range usually considered to represent the visual, 
photographic, and radar meteor phenomena on which both authors [3 ,  ii] based their 
estimates. By using the values of PI and p2 from Eqs. 32 and 28, the value of p3 which 
is considered for this analysis is the value with which the cumulative flux F, in Eq. 23is 
the same as both Whipple [ 31 and Watson [ i l l  have indicatedform = grams; i. e. , 

By Eqs. 23 and 3 it follows that logloF, is a linear function of the normally 
distributed random variable yl , and is therefore also normally distributed; and, by 
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Eq. 4, the mean and standard deviation are 

and 

respectively. Therefore, by Eqs. I, 30, 31, 5, 28, and 29, the tolerance quartiles 
for  the mass dependence of flux are represented by the following formula: 

logioF, = -1. 42 log,, m -14.64 *I. 92 

which is illustrated graphically in Figure I O .  

C. METEOROID VELOCITY 

I. Relative to the Earth's Atmosphere. Hawkins and Southworth's [ I I 
random sample of 286 nocturnal sporadic meteors in New Mexico (see Section 11. B. 2 
and II. B. 4) indicates a somewhat surprising relation between velocity va and the 
corresponding values of mass  m which were determined in Section II. B. 4. This relation 
is illustrated in the scatter diagram in Figure 11. It had been expected that the relation 
could be very well represented by 

with p4 approximately 0.046 and y2 an approximately normally distributed random 
variable with mean y2 and standard deviation uy2 approximately I. 51 and 0.12 respec- 
tively. But the least-squares solution with uniform weighting gave a linear correlation 
of -0.82 between logio va and logio m with the following result: 

(P4, 7 2 , ~ ~ ~ ~ )  = (-0.30, I. 50, 0.13) 

Also, by using the non-uniform weighting factors which are described in Appendix A, the 
least-squares solution gave a linear correlation of -0.82 and also 

(P4, ?~,UY,) = (-0.31, 1.42, 0.12) . 
Obviously these results would not be applicable over a very br6ad range of meteoroid 
mass  in Eq. 33. Therefore, for this analysis, the value for y2 is considered to cor- 
respond with Whipple's 131 recent estimate of 30 km/sec; i. e. , with 

P4 = 0 ( 34) 
and 

20 
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Also, the standard deviation u 
intervql of 12.8 d va 5 71.2  km/sec; Le., 

is considered to correspond with a 95% confidence 
Y2 

u = 0.19 
Y2 

2. Relative to a Vehicle in Orbit. When a spacecraft is orbiting in a 
nearly circular orbit with geocentric coordinate r, then its velocity vs is essentially 
horizontal with 

( 37) 
v s  = ( W e / r )  4 

Then, when one assumes that both the meteoroid and space vehicle are moving in the 
same plane, the closing velocity vc is 

+ ( 38) vc = (vs 2 + vra + 2vrvS sin xi) 

Because vr, Eqs. li and 38, is always reasonably large with respect to vs, it 
is assumed that, just as meteoroid velocity with respect to the Earth's atmosphere can 
be related to mass  by Eqs. 33 and 34., closing velocity vc with respect to a space vehicle 
in orbit near the Earthcan be similarly related by 

10giovc = Y3 ( 39) 

where y3 is an approximately normally distributed random variable with mean y3 and 
standard deviation u representing uncertainty of the relation physically and according 
to available information. Also, because the vehicle is near the Earth, one can sub- 
stitute ra for r and va for  vr in Eqs. 37 and 38. Therefore, by Eqs. 14 through 16 and 
33 through 39, 

y.3 

7 3  = I. 49 

and 

0 = 0.20. 

D. METEOROID DAMAGE 

Y3 

i. Nature and Function of Material Versus Effects. The meteoroid hazard 
to space vehicles, o r  the damage to be expected from meteors, is put in appropriate 
perspective by the following statement by Rinehart [ 121 about the concept of quality 
of failure: "In any particular target, the failure will usually be a complex of many 
qualities of failure, although frequently a single quality predominates. The basic 
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problems to consider are what qualities of failure prevail in the situation at hand, which 
ones are of interest, and whether each quality of failure is an energy-absorbing process,  
a momentum-absorbing process,  o r  a combination of both. And lastly, what is the 
quantitative relationship between the extent of failure of a particular quality and the 
energy and momentum available to cause the failure . a few overall qualities of 
failure are perforation o r  puncture, volume of crater, volume of failed region, scabbing, 
spallation, and amount of abrasion. . . If 

The quality of failure which will be emphasized in this report is failure by 
puncture of a metallic shell. This i s  necessary to keep the problem from getting too far 
afield. Should it be expected that the same shell would be more easily punctured when 
filled with a liquid? Or is it just the other way around? And then, of course, one would 
want to know what temperature, pressure,  shock wave, etc. , t h i  liquid is subjected to 
in the temporal vicinity, what chemical reaction follows, and if there is an explosive 
vaporization which further rends the structure. But such comprehensive considerations 
are beyond the scope of this report. 

2. Crater Volume in Thick Targets Versus Energy and Momentum for 
Meteoroids at Normal Incidence. Rinehart [ 121 illustrates his contention that the 
volume of the c ra te r  produced in a target material by an impacting meteoroid is a 
linear combination of the kinetic energy ( a  mvcz) and momentum (mv,) of the 
meteoroid with respect to the target. He says that ?!. . . if a failure results from ap- 
plication of an impulse under which the material dislodges easily and offers the inertia 
of its own m a s s  as a resistance to motion, then the process is a momentum transfer 
(a  flicking away of material, so to speak) . On the other hand, if the body steadily 
continues to resist  application of the force, the process is energy-absorbing (pushing 
of material against a force). Perforation of a thin plate by a projectile, o r  penetration 
into a laminated structure such as wood, a r e  momentum-absorbing processes. An 
energy-absorbing process is the formation of a deep cra te r  in steel by the impact of a 
heavy projectile. In most real  materials, the failure will be a combination of the two. *! 

Both Eichelberger [ 131 and Beard [81 imply that, for any given target and 
meteoroid material and structure, c ra te r  volume is essentially proportional to kinetic 
energy (+ mvc2) independently of momentum (mv,) . Eichelberger [ 131 says "The 
[empirical] results support very strongly the conclusion from fundamental considerations 
that cavitation plays the dominant role in crater  formation in ductile materials and 
explains the linear relationship between volume and energy. 
most probable that energy considerations of evaporation, rather than momentum effects, 
dominate the surface interaction of the micrometeorites with a satellite. I t  

Beard [ 81 says ??It is 

3. Crater  Depth in Thick Targets Versus Energy, Momentum, and Density 
Typically the various empirical and theoretical formulas for meteoroid of Meteoroids. 

crater  depth [ 141 are the product of the cube root of c ra te r  volume and the following 
three factors: ( i) ?he crater-shape factor, ( 2) the plate-thickness factor, and (3) the 

24 



angle-of-incidence factor. Thus, crater depth po is proportional to the 1/3 power of the 
mass m if crater  volume is a linear combination of energy (t  mvc2) and momentum 
(mv,) . Since Bjork 1151 indicates that po is proportional to (mv,) he is therefore 
presumably implying that crater volume is proportional to momentum (mv,) indepen- 
dently of energy (9 mvc2). 

An example of a penetration law that does not imply that crater volume is a linear 
combination of energy and momentum is the law that can be deduced from data which is 
graphically presented by Hoenig and Ritter [ 161 ; i. e. , that the logarithm of penetration 
depth is linearly related to the logarithm of crater diameter in the same interval of 
kinetic energy over which they indicate with another graph that c ra te r  diameter is 
proportional to the square root of kinetic energy. In other words, crater depth po is 
proportional to mu2vc  for  the experiments performed by Partridge at the University 
of Utah with wax pellets where impact velocity exceeds the velocity of sound in the 
target material. 

But to what must one say that the c ra te r  depth is proportional, when so  many 
factors are available from which to choose? Interestingly enough the geometric mean 
of Hoeing and Ritter’s [ 161 factor m%,, and Bjork’s [ I 5 1  factor, (mvc) 
(m5’4~C2) which is very close to Eichelberger’s factor (mvc2) u3. However, the 
author feels that neither momentum nor kinetic energy should be inconsequential. He 
prefers,  in the absence of more convGcing contrary information, to consider that 
crater depth, at normal incidence and for given target and meteoroid material and shape, 
is represented by 

is 

Po P5vcY4  

where: (I) P5 is a constant which will be assumed to have the same value, 

P5=  1/3 ( 43) 

as when crater  volume is a linear combination of momentum and energy, and (2) y4 
is an approximately normally distributed random variable , which represents both 
randomness and uncertainty because of insufficient information. The algebraic mean for 
y4 is considered to be the exponent of the gyometric mean of the factors vc ’” and vc 2’3 , 
which would represent proportionality of c ra te r  volume to momentum and energy, 
respectively , i. e. , 

The standard deviation for  y4 is considered to be one third of the difference between the 
above mentioned exponents 2/3 and 1/3, i.e. , 1/3 5 y4 I 2/3 at approximately 87percent 
confidence : 

cry4 = 1/9 ( 45) 
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Herrmann and Jones [ I 4 1  say: "Data on cratering has been reported by Summers 
for  copper projectiles impacting copper targets at 7,000 and 11,000 ft/sec [ 2.13 and 
3.35 km/sec] , and by Kineke for steel discs impacting lead targets at 16,400 ft/sec 
[ 5.00 km/sec] . Both experiments noted that the data for  oblique impact compared very 
well with that for normal impact, if penetration versus the normal component of velocity 
is plotted. This result can be represented by 

v = v c  cos x2 (46) X2 

where x2 is the angle of incidence relative to the normal to the target surface and is 
therefore a random variable. Presumably this relation, Eq. 46, will also be sufficiently 
appropriate for meteoroids hitting other metal targets. By Eq. 46 the angle-of- 
incidence factor by which the right side of Eq. 42 must be multiplied is (cos x2)y4, and 
therefore Eq. 42 is replaced by 

Y4 po N m (v, cos x2) 

To establish the statistical definition of x2 in Eq. 47, consider a meteoroid 
incident on a sphere and an axis parallel to the path of the meteoroid but containing the 
center of the sphere. The plane normal to the axis and containing the center of the 
sphere divides the sphere into two hemispheres, and the one which is hit is orthogonally 
projected onto its base plane. If x2 is the angle of incidence of the meteoroid relative 
to the normal to the surface of the hemisphere, then all meteoroids which a r e  parallel 
to the axis and which will have angles in the interval between x2 and x2 + dx2 will be 
projected onto a ring with radii in the interval between R k i n  x2 and R sin x2 + d( R sinx2) . 
The relative area of the differential ring is the probability density function for angular 
incidence x2, i. e. , 0 I x2 5 *T  and 

f(x2) = sin 2x2 . ( 48) 

Since f (x2) by Eq. 48 is symmetric with respect to as, it follows that both the 
mean and median of x2  a r e  given by 

( 49) 
- x2 = +r radians. 

Then the standard deviation of x2 is 
1 

ox2 = (7r2/i6 - ) = 0.34 radians. 

It is necessary to extend the (Eq. 47) formula for c ra te r  depth po. The following 
(Eq. 51) complete formula is established in Appendix C (Eq. 118). 
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where: (1) pt and Ht are the wall density and Brinell Hardness respectively, and (2) 
y5 is a random variable which is approximately normally distributed with the following 
mean y5 and standard deviation ay5 (Eqs. 114 and 115) : 

( 52) 
- y5 = -0 .44  

ay5=  0.08 . (53) 

The variation of y5 accounts for the variation of po for impact velocity 4.88 km/sec 
( 16,000 ft/sec) at normal incidence. 

4. -- Thickness of a Just-Puncturable - Wall Versus Mass ,  Density, Velocity, 
and Angle of Incidence of Meteoroids. The thickness p of a just-puncturable wall is 
related to the thick-target crater depth po by the target thickness factor iOy6, i. e. , 

p/po = i O Y 6  ( 54) 

where y6 is an approximately normally distributed random variable which represents 
both the randomness of the process and the uncertainty in the information about it. 
Bjork's comment is: "The calculations were made for thick targets, but enough 
information was obtained to deduce that if a projectile penetrates a depth p in a thick 
target, it will just penetrate a sheet of the same.target material which is I. 5p thick. '' 
Black [ 171 says: "To allow a 'bulge' although 'just not perforated', a skin gage of 1. 5 
times crater depth is generally assumed. (Note that this should be 2 - 3 if the results 
of Jaffe and Rittenhouse a r e  used) .If Eichelberger's [13] "rule of thumb" is that '?. . .a 
meteoroid.. .will produce a hemispherical crater  of volume T .  . . if the thickness of 
the skin is less  than ( 3 ~ / 2 n ) : ~ ~  (or even if it is slightly greater) , the skin will be 
perforated. 
and Jones [ 141 illustrate experimental results (which they attribute to Kinard et. al. 
at NASA Langley) and an empirical formula indicating that, a s  shell thickness is 
decreased toward the value p,  the value of p/po approaches 

In other words, the factor is 2i'3 = 1. 26 or slightly greater. Herrmann 

p/po ' ( i / i .3)2+1= i . 5 9  . ( 55) 

These (Eq. 55) results a r e  said to have been obtained with ?? .  . . steel and aluminum 
projectiles into aluminum targets at  impact velocities between 5,000 and 13,000 ft/sec" . . . , i. e. , between 1. 5 and 4 km/sec. When C is the confidence that this (Eq. 54) 
factor is equal to or less than the stated value, then it seems appropriate that the 
above mentioned four estimates should be accepted as follows: 

(C ,  10") = (0 .16,  i. 26) , ( 0 . 4 1 ,  1. 50) , (0 .50 ,  I. 59) , (0 .976,  2.5) (56) 
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I I  II I l l  I 

ay6 = 0.10  . 

SECTION III. DESIGN AND OPERATIONAL PARAMETERS 

A. JUST-PUNCTURABLE METEOROID MASS VERSUS THICKNESS, DENSITY, 
AND HARDNESS OF THE WALL OF A VEHICLE 

By taking the product of Eqs. 51 and 54 and substituting Eqs. 39 and 3 
expressions for loglovc and loglopp, one finds that meteoroid mass m in grams and 
puncturable wall thickness p in centimeters a r e  functionally related as follows: 

I 
p = ioy7 (m/ptHt)T 

where 

( 59) 

With the probability density function for angle of impact x2 in Eq. 48 it follows 
that the mean ?r, and variance ui6 of the random variable x6 in Eq. 64 are: 

d 2 - 
x6 = J (logio cos x2) sin 2x2 dx2 = -i logloe = -0.22 

o2 = J ( logio cos x2 + 4 logioe) sin 2x2 dx2 =a (logloe) = 0.047 

(65) 

( 66) 

2 0 

d 2 
0 

Because the means and variances are additive for the sum of statistically independent 
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- random variables, it follows from the numerical values for Ji3 , .ay3, x6 , and ax, in 
Eqs. 40, 41 , 65 and 66, respectively, that the mean x5 and variance ai5 of the random 
variable x5 in Eq. 63 are: 

- 
X5 = -0.688 + 7.3 + Z6 = 0.58 (67) 

(68) a' x5 = u2 Y3 + a2 x6 = (0.  20) + (0. 22) = 0.088 = (0.30) . 
Because the mean of the product of statistically independent random variables is the 
product of the means, it follows from the numerical yalues for y4 and Z5 in Eqs. 44 
and 67, respectively, that the mean X4 of the random variable x4 in Eq. 62 is 

When x4is approximated by the linear part  of the Taylor ser ies  expansion of the product 
y4 x5, it follows from' the numerical values for y4 , uy4, x5 , and ax in Eqs. 44, 45, 67, 
and 68, respectively, that the variance o2 is 

L I  

5 

x4 

+ ( 7 4  ax5) (70) = 0.026 

The random variable ya in Eq. 61 is a linear combination of statistically independent 
normal random variables and is therefore also normal. With the numerical values 
fo r  71 , Uy Y Y5Y oy5, y6, and uY6 in Eqs. 4,5,52,53,57, and 58, respectively, and the 
coefficienis in Eq. 61 , it follows that yg has the following mean 7 8  and variance a$a : 

- - 

Because y7 in Eq. 60 is a linear combination of the statistically independent random 
variables ya and x4, it follows with the values-of ?T4,0x4, 7 8 ,  and oy in Eqs. 69 through 
72, respectively, that the mean y7 and variance ui7 are a 

and 

o2 Y7 = Ya + u2 X4 = 0 . 1 5 4 ~  (0.39) . (74) 

By the ratio of Eqs. 72 and 74, 83 percent of the variance of y7 is due to the normal 
variable y8. Therefore the facts that the smaller component of the variance in y7 is 
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only a f i rs t  order  approximation and that the variable which contributes that smaller  
variance is not normally distributed can be ignored without appreciable e r ror .  Then 
y7 in Eq. 59 is approximately normally distributed with mean and probable error ex- 
pressed by 

( 75) y? = y7 rt 0.6745 uy7 = 1.15 f 0.26 . 
Therefore, by Eqs. 59 and 75, the wall thickness tolerance quartiles for  the punctur- 
ability of p centimeters by a meteoroid of mass  m grams can be represented by 

These results (Eq. 76) are represented graphically in Figures 12 and 13 for  the 
following two respective metallic walls: 

(pt ,  Ht) = (2.80, 135) : hard alluminum alloy ( 77) 

= (7.42, 310): hard stainless steel (78) 

B. METEOROID PUNCTURE-FLUX VERSUS THICKNESS, DENSITY , AND 
HARDNESS OF THE WALL OF A VEHICLE 

The puncture flux Cp is that value of F, in Eq. 23 corresponding to a just- 
The following forqula  is obtained by substituting into Eq. 23 puncturable value of m. 

the expression for loglom from Eq. 59 and the expression for p from Eq. 3; i .  e. , P 

where 

By Eqs. 60 and 6 1  the last term in Eq. 80 is 

Therefore, .with the values for  PI, p2, and P3 from Eqs. 2 ,  28, and 29, respectively, 
Eq, 80 becomes 

Then, with the means yl, y5, y6, andX4 from Eqs. 4, 52, 57, and 69, respectively, the 
mean y9 is 
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FIGURE 12. QUARTILES FOR THE THICKNESS OF A WALL OF HARD ALUMINUM ALLOY JUST 
PUNCTURABLE BY A METEOROID OF MASS m (GRAMS). 
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FIGURE 13. QUARTILES FOR THE THICKNESS OF A WALL OF HARD STAINLESS STEEL JUST 
PUNCTURABLE BY A METEOROID OF MASS m (GRAMS). 
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With the values of the standard deviations in Eqs. 5, 53, 58, and 70 it follows that the 
variable x4 contributes only 2 $ percent of the variance of y9; i. e. , 

Therefore no appreciable e r r o r  is introduced by using the first order  approximation for 
ax in Eq. 70 and considering y9 in Eqs. 82 to be approximately normally distributed 
w i h  standard deviation a given by 

Y9 

Then the mean and probable e r r o r  for the exponent of the puncture flux coefficient can 
be expressed by 

(86) y9 = 7 9  f 0.6745 0 = - 9.73 f 2.93 
Y9 

Consequently, by Eqs. 28 , 79 , 86 , the meteoroid puncture flux tolerance quartiles 
for wall thickness p can be represented by 

-9.73 f 2.93 -1.42 
(p = 10 (Pt Ht P3) ( 87) 

These results (Eq. 87) are represented graphically in Figures 14 and 15 for 
walls of hard aluminum and hard stainless steel specified by Eqs. 77 and 78 respec- 
t ive ly . 

C. WALL THICKNESS VERSUS THE PRODUCT OF EXPOSED AREA AND 
DURATION FOR GIVEN PROBABILITIES OF NO PUNCTURE 

By substituting the (Eq. 79) expression for @ into the (Eq. 8) expression 
for no-puncture probability R, and taking the common logarithm of the natural 
logarithm of both sides of the resulting expression, one finds 

h Z i 0  (-loge R) = loglo At ( P t  Htlp2 + 3p2 lOgioP Y9 ( 88) 

Eq. 88 can be solved for loglop as a linear function of the normal random variable y9. 
Then, with the values of p2 , y9, and a from Eqs. 28, 83, and 85, respectively, the 
mean and probable e r r o r  of loglo p .a:%, expressed by 
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FIGURE 14. QUARTILES FOR METEOROID PUNCTURE FLUX FOR A WALL O F  HARD 
ALLUMINUM ALLOY. 
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Therefore, the wall thickness tolerance quartiles can be represented by 

E[logiop] f 0.69 
p =  i o  

D. AMELIORATING CONSIDERATIONS 

Nysmith and Summers [ 21 reported that a two-sheet wall structure with a 
sheet spacing of one inch with interspersed glass wool filler has about 4.4 times 
greater penetration resistance than a single sheet of material of the same total-sheet 
thickness. 

SECTION IV. CONCLUSIONS 

Present information about meteoroids and their puncturability is so  poor that 
there is only an even chance that mean puncture flux (for  a single sheet of specified 
metal of specified thickness) is between upper and lower limits which are separated 
by almost six orders  of magnitude, And if a vehicle has been designed so  that for a 
specified mission there is only one chance in two that the no-puncture probability is 
less than a specified value, then it is necessary to increase the wall thickness by a 
factor of almost five so  that the chance is reduced to only one in four that the no-punc- 
ture probability is less than the same specified value. 
information will become available from time to time as space technology continues to 
develop through analysis, experimentation, and experience. Therefore, the latest 
available information should be considered for specific purposes. 

It is expected that further 
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APPENDIX A .  NON-UNIFORM WEIGHTING FOR METEOR DATA 

A random sample of photographic meteor data does not quite represent a random 
sample of nocturnal meteoroids when uniform weighting is assumed, because meteors of 
larger absolute magnitude are detectable over a n  appreciably smaller area. 
resulting bias should be considerably reduced by weighting the ith datum (where i = 
i ,  2, . . . , nt) with the relative value of the reciprocal of the area Ai over which the 
meteor, of the same absolute visual magnitude Mvi and height in kilometers hi at 
maximum brilliance, could have been assessed. Then the weighting €actor for the i t h  
datum is 

The 

n 

i =I 

Ai = 7r [ (6378 + h) sin O i l  (93) 

Where 6378 is the radius of the Earth in kilometers and where ei would be the 
geocentric angular separation of the station and the meteor at maximum brilliance 
beyond which there would not have been effective assessment. An appropriate 
expression for sin 8 in Eq. 93 can be found from the following relation: 

[ (6378 + hi) cos Oi  - 63781 tan Zi= (6378+hi) sin ei (94) 

where Z i  would be the angle between the station zenith and the meteor with geocentric 
coordinate e * i.e, , 

i '  

- -  2 6378 

Absolute visual magnitude M of a meteor is the magnitude it would have if it 
V i  

were placed in the zenith a t  a standard range of 100 kilometers. It is related to the 
equipment-lim iting apparent visual magnitude M by 

Mv = M - AMi - 5 logl, [ (6378 + hi) s in  8i  csc Zi] (96) 
i 

where AMi Is a n  adjustment fo r  atmospheric absorption. McKinley [ 181 indicates that, 
according to the Handbuch der Astrophysik, AMi in the interval 0 5 AMi 5 3.2 is 
linearly related to sec Zi in the interval 1 5 sec Z .  5 10; i. e. , that 1 

AMi = 0.36 (sec Zi - i) ( 97) 
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The relation between absolute visual magnitude Mvi and absolute photographic 
magnitude Mpmi is given by Eq. 26 in Section 11. A. 4. Therefore , by Eqs. 26 and 95 
through 97,  Z i  in Eq, 95 must satisfy the following equation: 

M - 10.11 - 0 . 8 6  Mpmi = 0.36 sec Zi + 5 logio F m ; 2 z i ' -  cos 

= 0. 36 sec ZOi+ 5 loglo 

where M is replaced by the equipment limiting apparent visual magnitude sensitivity, 
where h,. is the middle of the class  interval which contains hi and where Zoi is the 
value of ?3 which would very nearly correspond to hoi. With large samples it is not 
convenient to solve Eq. 98 directly for each datum. It is more appropriate to consider 
four class intervals ( h  < 80,  80 5 h < 90, 90 5 h < 100 , and h > 100) and calculate a 
set of values of the right side of Eq. 99 for  each class  at increments of 7r/200 for  
0 < Z, < 7r/2. Then for  each of the 5 values of the left side of the equation, the right 
side is scanned by trial subtraction and the difference changes sign at some least near- 
solution Zoi. The relation between Zi and Z o i  issthen found by approximating the ratio 
of the increments of Z and h by the negative of the inverse ratio of the partial derivatives 
of the difference between the right sides of Eqs. 98 and 99. In that way, because 
(5/0. 36) logio e = 6 . 0 ,  it can be shown that: 

( 100) 
In evaluating the weighting factors fi in Eq. 92,  the factor n( 6378) is common 

to each Ai. Therefore, by Eqs. 93 and 95, what one needs in Eq. 92 is the following 
result for each meteor: 

T( 6378) 2Aii  ={ "- cos Zi] s in  Zi}-2 . 
This method of non-uniform weighting, when applied to the random sample of 

286 sporadic photographic meteor data by Hawkins and Southworth [I] discussed in 
Sections II. A. 2, II. A. 4, and II. B. I , gives the results which are illustrated graphically 
in Figures 2, and 4 through 7. 
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APPENDIX B. METHOD FOR RELATING SAMPLE VALUES OF METEOR 

TOLERANCE QUARTILE VALUES FOR THEIR CUMULATIVE 
PROBABILITY. 

PARAMETERS AND THE APPROXIMATE ONE-SIDED 

When the probability density function is known, for  the population of values of 
a parameter from which one has a representative sample of size q, one can express 
any percentile (tolerance or  confidence limit) for  the cumulative probability of the 
population at any partitioning value of the parameter as a function of the sample 
moments. But, with state of the art meteor and meteoroid technology, the necessary 
function to use with photographic meteor data is in doubt to the extent that it seems 
more appropriate to partition the parameter at the sample values and to assume that 
the corresponding population cumulative probabilities are the same as one would infer 
binomially from the number of sample values which exceed the partition in nt trials. 

Some inherent difficulties are involved in this approach which are practically 
overcome by an'approximate method which has not been previously reported. This 
method is of sufficient general interest for application to a variety of problems that 
its presentation is given in this technical appendix. 

One wants to derive a convenient and sufficiently approximate formula relating 
ps explicitly to C y  nf , and nt where nf is the number of t imes an event has occurred 
during nt independent trials and C is the cumulative probability o r  confidence that the 
probability of event occurrence pe r  trial is not greater than ps. 

When p has either a Poisson o r  a binomial distribution, a convenient approx- 
imation to 'p, is pn, where pn is normally distributed with the following mean Fn and 
standard deviation (T - Pn' 

S 

Percentiles of orders  0.25,  0 . 5 0 ,  and 0.75  for  pn are given for sample size % = 286 
at each value of nf in the interval i 5 nf I 35 in Table II. 

The accuracy of pn as an  approximation to ps can be examined by substituting 
for ps the quartile values of pn into the following explicit formula for one-sided 
binomial confidence limits (see reference works on statistical methods; e. g. , Lloyd 
and Lipow's [i9]) 
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I 

.=1-c"o,: ( l - p s )  nt - i 
i=l i 

The corresponding values of C are also given for  each value of nf in Table 11. Because 
pn is a percentile of order C for  ps, disagreement between values of C and the 
corresponding orders  0 .25 ,  0 . 5 0 ,  and 0.75  of the percentiles for pn indicates that 
pn is not a very accurate approximation for  ps when nt = 286 and I 5 nf 5 35. 

The derivation of the following approximation formula, based on the Poisson 
failure distribution and other cri teria from sequential analysis , was, previously 
reported. 

where 

and 

In preparation for the present analysis the author compared the results from 
Eq. 105 with some results from Eq. 104, for binomial failure distribution, illustrated 
graphically by Lloyd and Lipow [ 19 I .  It was found that within the reading accuracy of 
the graph, the two sets of values agreed: ( 1) for  all C when nf = 0 (2) for all nf when 
C = 1/2, and (3) for all other combinations of nf and C when the exponent in Eq. 105 
is multiplied by the factor (3+2C) /4. Therefore it was thought that Eq. 105 is an 
appropriate approximation for Poisson failure distribution and that a similar approx- 
imation for binomial failure distribution is 

where 

6 = 0 when nf = 0 

= 1 when nf f 0 

and C and nf satisfy Eqs. 106 and 107 respectively. But by the further results for 
various combinations of nf and which are compiled in Table I, one finds that Eq. 108 
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gives results which are generally intermediate between the corresponding values from 
Poisson and binomial tables, and that even the Poisson results are as accurately 
approximated by Eq. 108 as by Eq. 105. 

All of the values of I - ps shown in Table I are for C = 0.975 because that is 
the value of C for which there are results for the Poisson distribution tabulated by 
Pearson and Hartley [ 201 which correspond to values for the binomial distribution 
tabulated by Hald [ 211. 

Having established, by inspection of Table I, that Eq. 108 may be a reasonably 
accurate approximation for ps , the accuracy of the approximations for the percentiles 
of orders 0.25, 0.50, and 0.75 for ps is illustrated in Table l.I in the same manner 
as has already been described for  the normal approximation pn. 

It can be seen in Table II that the values of ps from Eq. 108 differ substantially 
from those for the normal approximation pn for each quartile and for each value of 9. 
But when the values of ps are used in Eq. 104, the corresponding values of C more 
nearly agree with the orders 0.25, 0 .50,  and 0.75 of the quartiles which w e r e  to be 
found. 
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TABLE I 

LOWER ONE-SIDED 0.975 CONFIDENCE LIMITS (C) FOR THE PROBABILITY OF THE 
NON-OCCURRENCE OF AN EVENT PER TRIAL ( l-ps) BASED ON OCCURRENCES (nf) 

IN INDEPENDENT TRIALS (nt) 

0 

1 

1 
6 
ll 
1 

2 

22 

1 

POISSON DI.STFlIBUTION 

AF’PROXIMA!I’I ON 

By EQ. 105* 

TABLES BY 
PEARSON 

84 

RARTLEY 
( R e f .  20)  

0.478 
0.353 
0.gll 
0.817 
0.7435 

0.945 
0.785 
0.990 

0 $4 

0.478 
0,328 
0.896 
0.774 
0.680 
0.946 
0.95 
0 . 722 
0.989 

6 = 0 when nf = 0 

BINOMIAL DIs”rR1BUTION 

~~ ~ 

APPROXIMATI ON 

BY E&. 108 W+ 

- 
0.478 
0.276 
0.891 
0.779 
0 . 741 
0.944 

0.932 
0 , 741 
0.989 

TABLES By 

HALD 

(Ref. 21)  

0.478 
0.284 
0.896 
0 . 761 
0.646 
0,946 
0 931 
0.692 
0 . 9 9  

= 1 when ‘zf # o 



Second Tolerance W a r t i l e  lhird Tolerance W a r t i l e  

TABLE I1 

ORDER (C) FOR BINOMIAL PERCENTILES OF APPROXIMATIONS (p, and pn) TO THE 
TOLERANCE QUARTILES FOR THE EVENT PROBABILITY PER TRIAL BASED ON THE 

NUMBER OF OCCURRENCES (nf) IN 286 INDEPENDENT TRIALS (nt) .  - 
- 

nf - 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 12 

13 

14 

15 

16 
17 

18 

19 

20 

21 

22 

23 

24 

25 

26 27 

28 

29 

30 
31 

32 

33 

34 
35 - 

- 
P" 

0.0035 

0.0070 

0.0105 

0.0140 

0.0175 

0.0210 

0.0245 

0.0280 

0.0315 

0.0350 

0.0385 

0.0420 

- P. - 
4 . 3  

8.9 

11.4 

13.0 

14.2 

15.0 

15.7 

16.3 

16.8 

17.2 

17.6 

17.9 

18.1 

18.4 

18.6 

0.0039 

0.0070 

0.0101 

0.0131 

0.0162 
0.0193 

0.0223 

0.0254 

0.0285 

0.0315 

0.0346 

0.0377 

0.0407 

0.0438 

0.0469 

0.0500 

0.0531 

0.0561 

0.0592 

0.0623 
0.0654 

0.0685 

0.0715 

0.0746 

0.0777 

0.0808 

0.0839 

0.0870 

0.0901 

0.0932 
0.0963 

0.0993 

0.1024 

0.1055 

0.1086 - 

0.0059 

0.0103 

0.0146 

0.0187 

0.0227 

0.0267 

0.0307 

0.0346 

0,0385 

0.0423 

0.d162 

0.om 

0.0538 
0.0476 

0.0614 

0.0652 

0,0690 

0.0727 

0.0765 

0.0802 

0.0839 

0.0877 

0.0914 

0.0951 

0.0988 

0.1025 

0.1062 

0.1099 

0.1136 

0.1173 

0.1209 

0.1246 

0.1283 

0.1319 

0.1356 - 

1 

2 

3 
4 

5 
6 

7 

8 

9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
31 

32 

33 
34 

35 - 

74.9 

73.3 

72.6 

72.3 

72.2 

72.3 

72.4 

72.6 

72.9 

73.1 

73.4 

73.7 

74.0 
74.3 

74.6 

74.9 

75.2 

75.5 

75.7 

76.0 

76.3 

76.6 

76.9 

77.1 

77.4 

77.6 

77.9 

78.1 

78.4' 

78.6 

78.9 

79.1 

79.3 

79.5 

79.7 

50.0 I 
56.8 

60.0 

62.0 

63 .1  
64.4 

65.3 

65.9 

66.4 

66.9 

67.3 
67.7 

68.0 

68.2 

68.5 

68.7 

68.9 
69.1 

69 .3  

69.4 

69.6 

69.7 

69.9 

70.0 

75.1 

70.2 

70.3 

70.4 

70.5 

70.6 

70.7 

70.7 

70.8 

70.9 

71.0 - 

26.5 

32.4 

35.3 
37.2 

38.5 

39.5 

40.2 

40.8 

41.4 

41.8 

42.2 

42.5 

42.8 

43.1 

43 .3  

43.5 

43.7 

43.9 

44.1 

44.2 

44.4 

44.5 

44.6 

44.8 

44.9 

45.0 

45.1 

45 .2  

45.3 

45.4 

45.4 

45.5 

45.6 

45.7 

45.7 - 

0.0094 

0.0133 

0.0172 
0,0211 

0.0250 
0.0289 

0.0329 

0,0368 

0.0407 

0.0446 

0,0485 
0.0524 

0.0563 
0.0601 

0.0641 

0.0679 

0.0718 
0.0757 

0.0796 

0.0834 

0.0874 

0.0912 

0.0951 

0.0990 

0.1029 

0.1067 

0.1106 

0.1144 

0.1183 

0,1222 

0.1260 

0.1299 

0.1337 

0.1376 

0.1414 - 

32.4 

32.5 

32.3 

31.9 

31.4 

30.9 

30.4 

29.9 

29.4 

28.9 

28.4 

28.0 

27.5 

0.0037 

0.0064 
0.0093 

0.0123 
0.0153 

0.0183 

0.0214 

0.0245 

0.0276 

0.0308 

0.0340 

0.0372 

0.0404 

0.0129 50.4 

0.0164 50.4 

0,0199 ~ 50.4 
0.0234 50.4 

0.0269 , 50.3 

0.0304 50.3 
0.0338 I 50.3 
0.0373 50.3 

0.0408 50.3 
0.0443 1 50.3 

50.2 

50. 2 

0.0478 
0.0513 ' 

0.0548 

0.0583 

0.0618 

0.0653 
0.0687 

0.0722 

0.0757 

0.0792 

0.0827 

0.0862 

0.0897 

0.0931 

0.0966 

0.1001 

0.1036 

0.1071 

0.1106 

0.1140 

0.1175 

0.1210 

0.1245 - 

0.0455 
0.0490 

S0.2 0.0525 

50.2 j 0.0560 

27.0 ' 0.0436 

0.0468 

0 .05w 

0.0533 

0.0565 

26.6 

26.2 

25.7 

25.3 

24.9 

24.5 

24.1 

23.8 

23.4 

23.0 

22.7 

21.3 

22.0 

21.6 

21.3 

21.0 

20.7 

20.4 

20.1 

19.8 - 

18.8 

19.0 

19.2 

19.3 

0.0598 , 19.5 

50.2 

50.2 

50.1 
50.1 

50.1 

50.1 

50.1 

50.1 

50.0 

50.0 
50.0 

50.0 

50.0 

50.0 

49.9 

49.9 

49.9 

49.8 

49.8 - 

0.0595 

0.0630 
0.0665 

0.0700 

0.0735 

0.0770 

0.0805 

0.0840 

0.0875 

0.0910 

0.0945 

0.0980 

0.1015 

0.1050 

0.1085 

0.1120 

0.1155 

0.1190 

0,1225 

19.6 

19.8 

19.9 

20.0 

20.1 

20.2 

20.3 

20.4 

20.5 

20.6 

20.6 

20.7 

20.8 

20.9 

20.9 - 

0.0630 

0.0663 

0.0696 

0.0729 
0.0762 

0.0795 

0.0828 

0.0861 

0.0894 

0.0927 
0.0960 

0.0994 

0.1027 

0.1060 

0.1094 - 
p, = pn f 0.6745 J Fn ( i-pn)/nt where pn = nf/nt I .  * is -, nil, and + for  lst, 2nd, and 3rd quartiles respectively 

~3 rp p , = i  -[(:*$)/e "f I ( * 1/8) (9  - "f12) where nf f 0 



APPENDIX C. CRATER DEPTH 

The purpose of this appendix is to establish the necessary extension of the crater 
depth formula 

which was developed in Section II.D. 3 (Eq. 47). 

Herrmann and Jones' [ 141 survey and analysis of published theoretical and 
empirical results for  the c ra te r  depth in thick metal plates by hypervelocity projectiles 
are believed to provide a sufficient basis for establishing the c ra te r  shape factor. They 
conclude that, above a velocity transition region which depends on the target and pro- 
jectile densities, the projectile strength does not affect penetration , particularly for 
ductile projectiles, and: "If this is t rue ,  then the only factor to account for differences 
in penetration in a given target material by different projectile materials is the pro- 
jectile density. ' 1  By an analysis of the empirical results published for many different 
target and projectile materials , Herrmann and Jones [ 141 developed the following 
empirical non-dimensional penetration law for  normal impact: 

where (I) Ht is the Brinell Hardness .of the target, (2)  pp and pt are the projectile and 
target densities respectively, and (3) d is the diameter of the projectile. But, when 
the units for pt are gm/cm3 and those fo r  vc are km/sec, then a further proportionality 
constant is necessary in the last term in Eq. I 1 0  because, by the definition in the 
Metals Handbook 1221, the units for  Brinell Hardness Ht are kilograms of force per 
square millimeter, i.e. , Eq. I 1 0  must be replaced by 

where 

= 102. (gm/cm3) (_i_05 cm/sec) 
(980,665 gm cm/sec2) / (10-1 em) 2 

k =  

Also in Eq. Ill, y7 is an  approximately normally distributed random variable, indi- 
cating the uncertainty in the relation and in the information about i t ,  determined from 
the coefficient in Eq. I 1 0  by 
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where one assumes from various comments that the numerically indicated uncertainty 
is standard deviation rather than probable e r r o r  or  mean deviation (mean absolute 
e r ror ) .  Also, Herrmann and Jones [ 141 have explained that they got the results, 
Eqs. I10 and 113:, by plotting and fitting on log-log paper. So it is evident that x3 in 
Eqs. 110 and ill is actually the antilogarithm of the more basic random variable y5. 
Because it is subject to the normal law of e r r o r  more directly in the fitting process 
than is x3, y5 can more appropriately be considered as approximately normally dis- 
tributed. 
(T given by 

Presumably y5 can be considered to have mean and standard deviation 

Y5 

Let both p and d in Eq. i ll  be measured in centimeters. 
meteoroid hazard is not essentially misrepresented by a spherical meteoroid of mass 
m grams , 

Then, assuming that 

1 
d = 2 ( 3 m / 4 ~ p  ) 3 . - 

P 

The experimental conditions under which the relations given in Eq. i i I were found involved 
velocities ranging up to 4.88 km/sec (16,000 ft/sec). Then, by Eqs. I l l ,  113, and 
116, crater  depth (at normal incidence) would be expressed by 

Herrmann and Jones [ 141 make the following further comment about Eq. 110: 
?'It might be noted that a slightly higher exponent in pt might be expected to fit slightly 
better. However, it was decided to retain the advantages of a non-dimensional fit. 
Small changes (-+IO percent) in exponents of the non-dimensional parameters did not signif- 
icantly alter the mean deviation. Also, the value to be used for the exponent of (pp/pt) 
is uncertain, to a considerable extent, as is indicated by Bjork [15 ] .  However, the 
random coefficient IOy5 in Eq. 117 must account for  the uncertainty in the exponents 
of density and velocity over the density-velocity region involved in the experiments. 
Some further uncertainty because of extrapolation to higher velocities is represented by 
replacing the velocity ratio exponent in Eq. 117 by y4 as in Eq. 109. Therefore (by Eqs. 
109, 112, and 117) thick-target c ra te r  depth at oblique incidence is 
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It is of some interest to see how well crater depth (by Eq. 118) agrees with the 
following formula established by Bjork [i5] for  the depth of craters  in thick aluminum 
targets hit by aluminum projectiles at normal incidence: 

In establishing Eq. i i 9  Bjork 1151 : ( I )  obtained the functional dependence by theoret- 
ical considerations and ( 2 )  chose the coefficient for  agreement with experimental results 
at 6 . 3  km/sec. He did not report the Brinell hardness of the aluminum target. But, 
for  soft aluminum with Brinell hardness 40, Eqs. 118 and i i 9  indicate the same 
median value for the 6 . 3  km/sec impact velocity when the median values of y4 and y5,  
by Eqs. 44 and 114 respectively are substituted into Eq. 118. 
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